musicbrainzngs Documentation
Release 0.3

Alastair Porter et. al

October 08, 2013

CONTENTS

CHAPTER
ONE

INSTALLATION

1.1 Package manager

If you want the latest stable version of musicbrainzngs, the first place to check is your systems package manager.
Being a relatively new library, you might not be able to find it packaged by your distribution and need to use one of
the alternate installation methods.

1.2 PyPI

Musicbrainzngs is available on the Python Package Index. This makes installing it with pip as easy as:

pip install musicbrainzngs

1.3 Git

If you want the latest code or even feel like contributing, the code is available on Github.
You can easily clone the code with git:

git clone git://github.com/alastair/python-musicbrainz-ngs.git

Now you can start hacking on the code or install it system-wide:

python setup.py install

http://www.pip-installer.org
https://github.com/alastair/python-musicbrainz-ngs

musicbrainzngs Documentation, Release 0.3

2 Chapter 1. Installation

CHAPTER
TWO

USAGE

2.1 ldentification

To access the MusicBrainz webservice through this library, you need to identify your application by setting the usera-
gent header made in HTTP requests to one that is unique to your application.

To ease this, the convenience function musicbrainzngs.set_useragent () is provided which automatically
sets the useragent based on information about the application name, version and contact information to the format
recommended by MusicBrainz.

If a request is made without setting the useragent beforehand, a musicbrainzngs.UsageError will be raised.

2.2 Authentication

Certain calls to the webservice require user authentication prior to the call itself. The affected functions state this
requirement in their documentation. The user and password used for authentication are the same as for the Mu-
sicBrainz website itself and can be set with the musicbrainzngs.auth () method. After calling this function,
the credentials will be saved and automaticall used by all functions requiring them.

If a method requiring authentication is called without authenticating, a musicbrainzngs.UsageError will be
raised.

If the credentials provided are wrong and the server returns a status code of 401, a
musicbrainzngs.AuthenticationError will be raised.

2.3 Getting data
2.4 Searching
2.5 Browsing

2.6 Submitting

http://musicbrainz.org/doc/XML_Web_Service/Version_2#Identifying_your_application_to_the_MusicBrainz_Web_Service
http://musicbrainz.org/doc/XML_Web_Service/Rate_Limiting#Provide_meaningful_User-Agent_strings

musicbrainzngs Documentation, Release 0.3

4 Chapter 2. Usage

CHAPTER
THREE

API

3.1 General

musicbrainzngs.auth (u, p)
Set the username and password to be used in subsequent queries to the MusicBrainz XML API that require
authentication.

musicbrainzngs.set_rate_limit (limit_or_interval=1.0, new_requests=1)
Sets the rate limiting behavior of the module. Must be invoked before the first Web service call. If the
limit_or_interval parameter is set to False then rate limiting will be disabled. If it is a number then only a
set number of requests (new_requests) will be made per given interval (limit_or_interval).

musicbrainzngs.set_useragent (app, version, contact=None)
Set the User-Agent to be used for requests to the MusicBrainz webservice. This must be set before requests are
made.

musicbrainzngs.set_hostname (new_hostname)
Set the base hostname for MusicBrainz webservice requests. Defaults to ‘musicbrainz.org’.

3.2 Getting data

musicbrainzngs.get_artist_by_id (id, includes= [] release_status= [] , release_type= [])
musicbrainzngs.get_label_ by id (id, includes= [] , release_status= [], release_type= [])
musicbrainzngs.get_recording by id (id, includes= [], release_status= [] , release_type= [])

musicbrainzngs.get_recordings_by echoprint (echoprint, includes= [], release_status= [],
release_type:[])

musicbrainzngs.get_recordings_by_ puid (puid, includes= [], release_status= [], re-
lease_type= [])

musicbrainzngs.get_recordings_by isrc (isrc, includes= [] , release_status= [] , release_type= [

D

musicbrainzngs.get_release_group_by_id (id, includes= [] , release_status= [] , release_type= [

D
musicbrainzngs.get_release_ by id (id, includes= [], release_status= [], release_type= [])

musicbrainzngs.get_releases_by_discid (id, includes= [] , release_status= [] , release_type= [

D

musicbrainzngs Documentation, Release 0.3

musicbrainzngs.get_work_by id (id, includes= [])
musicbrainzngs.get_works_by_ iswc (iswc, includes= [])
musicbrainzngs.get_collections ()

musicbrainzngs.get_releases_in_collection (collection)

3.3 Searching

musicbrainzngs.search_annotations (query=", limit=None, offset=None, strict=False, **fields)
Search for annotations by a free-form query string or any of the following keyword arguments specifying field
queries: entity, name, text, type When fields are set, special lucene characters are escaped in the query.

musicbrainzngs.search_artists (query="‘, limit=None, offset=None, strict=False, **fields)
Search for artists by a free-form query string or any of the following keyword arguments specifying field queries:
arid, artist, sortname, type, begin, end, comment, alias, country, gender, tag When fields are set, special lucene
characters are escaped in the query.

musicbrainzngs.search_labels (query="" limit=None, offset=None, strict=False, **fields)
Search for labels by a free-form query string or any of the following keyword arguments specifying field queries:
laid, label, sortname, type, code, country, begin, end, comment, alias, tag When fields are set, special lucene
characters are escaped in the query.

musicbrainzngs.search_recordings (query="‘, limit=None, offset=None, strict=False, **fields)
Search for recordings by a free-form query string or any of the following keyword arguments specifying field
queries: rid, recording, isrc, arid, artist, artistname, creditname, reid, release, type, status, tracks, tracksrelease,
dur, qdur, tnum, position, tag When fields are set, special lucene characters are escaped in the qguery.

¢

musicbrainzngs.search_release_groups (query="‘, limit=None, offset=None, strict=False,

**fields)
Search for release groups by a free-form query string or any of the following keyword arguments specifying

field queries: rgid, releasegroup, reid, release, arid, artist, artistname, creditname, type, tag When fields are set,
special lucene characters are escaped in the qguery.

musicbrainzngs.search_releases (query="‘, limit=None, offset=None, strict=False, **fields)
Search for releases by a free-form query string or any of the following keyword arguments specifying field
queries: reid, release, arid, artist, artistname, creditname, type, status, tracks, tracksmedium, discids, dis-
cidsmedium, mediums, date, asin, lang, script, country, date, label, catno, barcode, puid When fields are set,
special lucene characters are escaped in the query.

musicbrainz.VALID_INCLUDES = {‘echoprint’: [’artists’, ‘releases’], ‘collection’: [’releases’], ‘isrc’: [’artists’, ‘releases’, ‘p

musicbrainz.VALID_SEARCH_FIELDS = {‘artist’: [’arid’, ‘artist’, ‘sortname’, ‘type’, ‘begin’, ‘end’, ‘comment’, ‘alias’, ‘co

3.4 Browsing

musicbrainzngs.browse_artists (recording=None, release=None, release_group=None, in-
cludes:[], limit=None, offset=None)

musicbrainzngs.browse_labels (release=None, includes= [] , limit=None, offset=None)

musicbrainzngs.browse_recordings (artist=None, release=None, includes= [] , limit=None, off-
set=None)

musicbrainzngs.browse_release_groups (artist=None, release=None, release_type= [] , in-
cludes= [], limit=None, offset=None)

6 Chapter 3. API

musicbrainzngs Documentation, Release 0.3

musicbrainzngs.browse_releases (artist=None, label=None, recording=None, re-
lease_group=None, release_status= [], release_rypez[],
includes= [], limit=None, offset=None)

3.5 Submitting

musicbrainzngs.submit_barcodes (barcodes)
Submits a set of {releasel: barcodel, release2:barcode?2}

Must call auth(user, pass) first

musicbrainzngs.submit_puids (puids)
Submit PUIDs.

Must call auth(user, pass) first

musicbrainzngs.submit_echoprints (echoprints)
Submit echoprints.

Must call auth(user, pass) first

musicbrainzngs.submit_isrcs (recordings_isrcs)
Submit ISRCs. Submits a set of {recording-id: [isrcl, isrc2, ...]}

Must call auth(user, pass) first

musicbrainzngs.submit_tags (artist_tags={}, recording_tags={})
Submit user tags. Artist or recording parameters are of the form: { ‘entityid’: [taglist]}

Must call auth(user, pass) first

musicbrainzngs.submit_ratings (artist_ratings={}, recording_ratings={})
Submit user ratings. Artist or recording parameters are of the form: {‘entityid’: rating}

Must call auth(user, pass) first

musicbrainzngs.add_releases_to_collection (collection, releases= [])
Add releases to a collection. Collection and releases should be identified by their MBIDs

Must call auth(user, pass) first

musicbrainzngs.remove_releases_from collection (collection, releases= [])
Remove releases from a collection. Collection and releases should be identified by their MBIDs

Must call auth(user, pass) first

3.6 Exceptions

class musicbrainzngs.AuthenticationError (message=None, cause=None)
Received a HTTP 401 response while accessing a protected resource.

class musicbrainzngs.UsageError
Error related to misuse of the module API.

3.5. Submitting 7

musicbrainzngs Documentation, Release 0.3

8 Chapter 3. API

CHAPTER
FOUR

INDICES AND TABLES

