
musicbrainzngs Documentation
Release 0.5

Alastair Porter et. al

February 06, 2014

Contents

i

ii

musicbrainzngs Documentation, Release 0.5

musicbrainzngs implements Python bindings of the MusicBrainz Web Service (WS/2, NGS). With this library you can
retrieve all kinds of music metadata from the MusicBrainz database.

musicbrainzngs is released under a simplified BSD style license.

Contents 1

http://musicbrainz.org/doc/Development/XML%20Web%20Service/Version%202
http://musicbrainz.org

musicbrainzngs Documentation, Release 0.5

2 Contents

CHAPTER 1

Contents

1.1 Installation

1.1.1 Package manager

If you want the latest stable version of musicbrainzngs, the first place to check is your systems package manager.
Being a relatively new library, you might not be able to find it packaged by your distribution and need to use one of
the alternate installation methods.

1.1.2 PyPI

Musicbrainzngs is available on the Python Package Index. This makes installing it with pip as easy as:

pip install musicbrainzngs

1.1.3 Git

If you want the latest code or even feel like contributing, the code is available on GitHub.

You can easily clone the code with git:

git clone git://github.com/alastair/python-musicbrainzngs.git

Now you can start hacking on the code or install it system-wide:

python setup.py install

1.2 Usage

In general you need to set a useragent for your application, start searches to get to know corresponding MusicBrainz
IDs and then retrieve information about these entities.

The data is returned in form of a dict.

If you also want to submit data, then you must authenticate as a MusicBrainz user.

This part of the documentation will give you usage examples. For an overview of available functions you can have a
look at the API.

3

http://www.pip-installer.org
https://github.com/alastair/python-musicbrainzngs
http://python.readthedocs.org/en/v2.7.2/library/stdtypes.html#dict

musicbrainzngs Documentation, Release 0.5

1.2.1 Identification

To access the MusicBrainz webservice through this library, you need to identify your application by setting the usera-
gent header made in HTTP requests to one that is unique to your application.

To ease this, the convenience function musicbrainzngs.set_useragent() is provided which automatically
sets the useragent based on information about the application name, version and contact information to the format
recommended by MusicBrainz.

If a request is made without setting the useragent beforehand, a musicbrainzngs.UsageError will be raised.

1.2.2 Authentication

Certain calls to the webservice require user authentication prior to the call itself. The affected functions state this
requirement in their documentation. The user and password used for authentication are the same as for the Mu-
sicBrainz website itself and can be set with the musicbrainzngs.auth() method. After calling this function,
the credentials will be saved and automaticall used by all functions requiring them.

If a method requiring authentication is called without authenticating, a musicbrainzngs.UsageError will be
raised.

If the credentials provided are wrong and the server returns a status code of 401, a
musicbrainzngs.AuthenticationError will be raised.

1.2.3 Getting data

You can get MusicBrainz entities as a dict when retrieving them with some form of identifier. An example using
musicbrainzngs.get_artist_by_id():

artist_id = "c5c2ea1c-4bde-4f4d-bd0b-47b200bf99d6"
try:

musicbrainzngs.get_artist_by_id(artist_id)
except WebServiceError as exc:

print("Something went wrong with the request: %s" % exc)
else:

artist = result["artist"]
print("name:\t\t%s" % artist["name"])
print("sort name:\t%s" % artist["sort-name"])

You can get more information about entities connected to the artist with adding includes and you filter releases and
release_groups:

result = musicbrainzngs.get_artist_by_id(artist_id,
includes=["release-groups"], release_type=["album", "ep"])

for release_group in result["artist"]["release-group-list"]:
print("{title} ({type})".format(title=release_group["title"],

type=release_group["type"]))

Tip: Compilations are also of primary type “album”. You have to filter these out manually if you don’t want them.

Note: You can only get at most 25 release groups using this method. If you want to fetch all release groups you will
have to browse.

4 Chapter 1. Contents

http://musicbrainz.org/doc/XML_Web_Service/Version_2#Identifying_your_application_to_the_MusicBrainz_Web_Service
http://musicbrainz.org/doc/XML_Web_Service/Rate_Limiting#Provide_meaningful_User-Agent_strings
http://python.readthedocs.org/en/v2.7.2/library/stdtypes.html#dict

musicbrainzngs Documentation, Release 0.5

1.2.4 Searching

When you don’t know the MusicBrainz IDs yet, you have to start a search. Using
musicbrainzngs.search_artist():

result = musicbrainzngs.search_artists(artist="xx", type="group",
country="GB")

for artist in result[’artist-list’]:
print(u"{id}: {name}".format(id=artist[’id’], name=artist["name"]))

Tip: Musicbrainzngs returns unicode strings. It’s up to you to make sure Python (2) doesn’t try to convert these to
ascii again. In the example we force a unicode literal for print. Python 3 works without fixes like these.

You can also use the query without specifying the search fields:

musicbrainzngs.search_release_groups("the clash london calling")

The query and the search fields can also be used at the same time.

1.2.5 Browsing

When you want to fetch a list of entities greater than 25, you have to use one of the browse functions. Not only can
you specify a limit as high as 100, but you can also specify an offset to get the complete list in multiple requests.

An example would be using musicbrainzngs.browse_release_groups() to get all releases for a label:

label = "71247f6b-fd24-4a56-89a2-23512f006f0c"
limit = 100
offset = 0
releases = []
page = 1
print("fetching page number %d.." % page)
result = musicbrainzngs.browse_releases(label=label, includes=["labels"],

release_type=["album"], limit=limit)
page_releases = result[’release-list’]
releases += page_releases
release-count is only available starting with musicbrainzngs 0.5
if "release-count" in result:

count = result[’release-count’]
print("")

while len(page_releases) >= limit:
offset += limit
page += 1
print("fetching page number %d.." % page)
result = musicbrainzngs.browse_releases(label=label, includes=["labels"],

release_type=["album"], limit=limit, offset=offset)
page_releases = result[’release-list’]
releases += page_releases

print("")
for release in releases:

for label_info in release[’label-info-list’]:
catnum = label_info.get(’catalog-number’)
if label_info[’label’][’id’] == label and catnum:

print("{catnum:>17}: {date:10} {title}".format(catnum=catnum,
date=release[’date’], title=release[’title’]))

print("\n%d releases on %d pages" % (len(releases), page))

1.2. Usage 5

musicbrainzngs Documentation, Release 0.5

Tip: You should always try to filter in the query, when possible, rather than fetching everything and filtering after-
wards. This will make your application faster since web service requests are throttled. In the example we filter by
release_type.

1.2.6 Submitting

You can also submit data using musicbrainzngs. Please use musicbrainzngs.set_hostname() to set the host
to test.musicbrainz.org when testing the submission part of your application.

Authentication is necessary to submit any data to MusicBrainz.

An example using musicbrainzngs.submit_barcodes() looks like this:

musicbrainzngs.set_hostname("test.musicbrainz.org")
musicbrainzngs.auth("test", "mb")

barcodes = {
"174a5513-73d1-3c9d-a316-3c1c179e35f8": "5099749534728",
"838952af-600d-3f51-84d5-941d15880400": "602517737280"

}
musicbrainzngs.submit_barcodes(barcodes)

See Submitting in the API for other possibilites.

1.3 API

This is a shallow python binding of the MusicBrainz web service so you should read Development/XML Web Ser-
vice/Version 2 to understand how that web service works in general.

All requests that fetch data return the data in the form of a dict. Attributes and elements both map to keys in the dict.
List entities are of type list.

This part will give an overview of available functions. Have a look at Usage for examples on how to use them.

1.3.1 General

musicbrainzngs.auth(u, p)
Set the username and password to be used in subsequent queries to the MusicBrainz XML API that require
authentication.

musicbrainzngs.set_rate_limit(limit_or_interval=1.0, new_requests=1)
Sets the rate limiting behavior of the module. Must be invoked before the first Web service call. If the
limit_or_interval parameter is set to False then rate limiting will be disabled. If it is a number then only a
set number of requests (new_requests) will be made per given interval (limit_or_interval).

musicbrainzngs.set_useragent(app, version, contact=None)
Set the User-Agent to be used for requests to the MusicBrainz webservice. This must be set before requests are
made.

musicbrainzngs.set_hostname(new_hostname)
Set the base hostname for MusicBrainz webservice requests. Defaults to ‘musicbrainz.org’.

6 Chapter 1. Contents

http://musicbrainz.org/doc/Development/XML Web Service/Version 2
http://musicbrainz.org/doc/Development/XML Web Service/Version 2
http://python.readthedocs.org/en/v2.7.2/library/stdtypes.html#dict
http://python.readthedocs.org/en/latest/library/stdtypes.html#list

musicbrainzngs Documentation, Release 0.5

musicbrainzngs.set_parser(new_parser_fun=None)
Sets the function used to parse the response from the MusicBrainz web service.

If no parser is given, the parser is reset to the default parser mb_parser_xml().

musicbrainzngs.set_format(fmt=’xml’)
Sets the format that should be returned by the Web Service. The server currently supports xml and json.

When you set the format to anything different from the default, you need to provide your own parser with
set_parser().

Warning: The json format used by the server is different from the json format returned by the mu-
sicbrainzngs internal parser when using the xml format!

1.3.2 Getting Data

All of these functions will fetch a MusicBrainz entity or a list of entities as a dict. You can spec-
ify a list of includes to get more data and you can filter on release_status and release_type. See
musicbrainz.VALID_RELEASE_STATUSES and musicbrainz.VALID_RELEASE_TYPES. The valid in-
cludes are listed for each function.

musicbrainzngs.get_area_by_id(id, includes=[], release_status=[], release_type=[])
Get the area with the MusicBrainz id as a dict with an ‘area’ key.

Available includes: aliases, annotation, area-rels, artist-rels, label-rels, place-rels, recording-rels, release-rels,
release-group-rels, url-rels, work-rels

musicbrainzngs.get_artist_by_id(id, includes=[], release_status=[], release_type=[])
Get the artist with the MusicBrainz id as a dict with an ‘artist’ key.

Available includes: recordings, releases, release-groups, works, various-artists, discids, media, isrcs, aliases,
annotation, area-rels, artist-rels, label-rels, place-rels, recording-rels, release-rels, release-group-rels, url-rels,
work-rels, tags, user-tags, ratings, user-ratings

musicbrainzngs.get_label_by_id(id, includes=[], release_status=[], release_type=[])
Get the label with the MusicBrainz id as a dict with a ‘label’ key.

Available includes: releases, discids, media, aliases, annotation, area-rels, artist-rels, label-rels, place-rels,
recording-rels, release-rels, release-group-rels, url-rels, work-rels, tags, user-tags, ratings, user-ratings

musicbrainzngs.get_place_by_id(id, includes=[], release_status=[], release_type=[])
Get the place with the MusicBrainz id as a dict with an ‘place’ key.

Available includes: aliases, annotation, area-rels, artist-rels, label-rels, place-rels, recording-rels, release-rels,
release-group-rels, url-rels, work-rels, tags, user-tags

musicbrainzngs.get_recording_by_id(id, includes=[], release_status=[], release_type=[])
Get the recording with the MusicBrainz id as a dict with a ‘recording’ key.

Available includes: artists, releases, discids, media, artist-credits, isrcs, annotation, aliases, tags, user-tags,
ratings, user-ratings, area-rels, artist-rels, label-rels, place-rels, recording-rels, release-rels, release-group-rels,
url-rels, work-rels

musicbrainzngs.get_recordings_by_isrc(isrc, includes=[], release_status=[], release_type=[
])

Search for recordings with an ISRC. The result is a dict with an ‘isrc’ key, which again includes a ‘recording-
list’.

1.3. API 7

http://musicbrainz.org/doc/ISRC

musicbrainzngs Documentation, Release 0.5

Available includes: artists, releases, discids, media, artist-credits, isrcs, annotation, aliases, tags, user-tags,
ratings, user-ratings, area-rels, artist-rels, label-rels, place-rels, recording-rels, release-rels, release-group-rels,
url-rels, work-rels

musicbrainzngs.get_release_group_by_id(id, includes=[], release_status=[], release_type=[
])

Get the release group with the MusicBrainz id as a dict with a ‘release-group’ key.

Available includes: artists, releases, discids, media, artist-credits, annotation, aliases, tags, user-tags, ratings,
user-ratings, area-rels, artist-rels, label-rels, place-rels, recording-rels, release-rels, release-group-rels, url-rels,
work-rels

musicbrainzngs.get_release_by_id(id, includes=[], release_status=[], release_type=[])
Get the release with the MusicBrainz id as a dict with a ‘release’ key.

Available includes: artists, labels, recordings, release-groups, media, artist-credits, discids, isrcs, recording-
level-rels, work-level-rels, annotation, aliases, area-rels, artist-rels, label-rels, place-rels, recording-rels, release-
rels, release-group-rels, url-rels, work-rels

musicbrainzngs.get_releases_by_discid(id, includes=[], toc=None, cdstubs=True)
Search for releases with a Disc ID.

When a toc is provided and no release with the disc ID is found, a fuzzy search by the toc is done. The toc
should have to same format as discid.Disc.toc_string.

If no toc matches in musicbrainz but a CD Stub does, the CD Stub will be returned. Prevent this from happening
by passing cdstubs=False.

The result is a dict with either a ‘disc’ , a ‘cdstub’ key or a ‘release-list’ (fuzzy match with TOC). A ‘disc’ has a
‘release-list’ and a ‘cdstub’ key has direct ‘artist’ and ‘title’ keys.

Available includes: artists, labels, recordings, release-groups, media, artist-credits, discids, isrcs, recording-
level-rels, work-level-rels, annotation, aliases, area-rels, artist-rels, label-rels, place-rels, recording-rels, release-
rels, release-group-rels, url-rels, work-rels

musicbrainzngs.get_work_by_id(id, includes=[])
Get the work with the MusicBrainz id as a dict with a ‘work’ key.

Available includes: artists, aliases, annotation, tags, user-tags, ratings, user-ratings, area-rels, artist-rels, label-
rels, place-rels, recording-rels, release-rels, release-group-rels, url-rels, work-rels

musicbrainzngs.get_works_by_iswc(iswc, includes=[])
Search for works with an ISWC. The result is a dict with a‘work-list‘.

Available includes: artists, aliases, annotation, tags, user-tags, ratings, user-ratings, area-rels, artist-rels, label-
rels, place-rels, recording-rels, release-rels, release-group-rels, url-rels, work-rels

musicbrainzngs.get_url_by_id(id, includes=[])
Get the url with the MusicBrainz id as a dict with a ‘url’ key.

Available includes: area-rels, artist-rels, label-rels, place-rels, recording-rels, release-rels, release-group-rels,
url-rels, work-rels

musicbrainzngs.get_collections()
List the collections for the currently authenticated user as a dict with a ‘collection-list’ key.

musicbrainzngs.get_releases_in_collection(collection, limit=None, offset=None)
List the releases in a collection. Returns a dict with a ‘collection’ key, which again has a ‘release-list’.

See Browsing for how to use limit and offset.

musicbrainzngs.musicbrainz.VALID_RELEASE_TYPES = [’nat’, ‘album’, ‘single’, ‘ep’, ‘broadcast’, ‘other’, ‘compilation’, ‘soundtrack’, ‘spokenword’, ‘interview’, ‘audiobook’, ‘live’, ‘remix’, ‘dj-mix’, ‘mixtape/street’]
These can be used to filter whenever releases are includes or browsed

8 Chapter 1. Contents

http://musicbrainz.org/doc/Disc ID
http://python-discid.readthedocs.org/en/latest/api/#discid.Disc.toc_string
http://musicbrainz.org/doc/CD Stub
http://musicbrainz.org/doc/ISWC

musicbrainzngs Documentation, Release 0.5

musicbrainzngs.musicbrainz.VALID_RELEASE_STATUSES = [’official’, ‘promotion’, ‘bootleg’, ‘pseudo-release’]
These can be used to filter whenever releases or release-groups are involved

1.3.3 Searching

For all of these search functions you can use any of the allowed search fields as parameter names. The documentation
of what these fields do is on Development/XML Web Service/Version 2/Search.

You can also set the query parameter to any lucene query you like. When you use any of the search fields as parameters,
special characters are escaped in the query.

By default the elements are concatenated with spaces in between, so lucene essentially does a fuzzy search. That
search might include results that don’t match the complete query, though these will be ranked lower than the ones that
do. If you want all query elements to match for all results, you have to set strict=True.

By default the web service returns 25 results per request and you can set a limit of up to 100. You have to use the offset
parameter to set how many results you have already seen so the web service doesn’t give you the same results again.

musicbrainzngs.search_annotations(query=’‘, limit=None, offset=None, strict=False, **fields)
Search for annotations and return a dict with an ‘annotation-list’ key.

Available search fields: entity, name, text, type

musicbrainzngs.search_artists(query=’‘, limit=None, offset=None, strict=False, **fields)
Search for artists and return a dict with an ‘artist-list’ key.

Available search fields: arid, artist, artistaccent, alias, begin, comment, country, end, ended, gender, ipi, sort-
name, tag, type, area, beginarea, endarea

musicbrainzngs.search_labels(query=’‘, limit=None, offset=None, strict=False, **fields)
Search for labels and return a dict with a ‘label-list’ key.

Available search fields: alias, begin, code, comment, country, end, ended, ipi, label, labelaccent, laid, sortname,
type, tag, area

musicbrainzngs.search_recordings(query=’‘, limit=None, offset=None, strict=False, **fields)
Search for recordings and return a dict with a ‘recording-list’ key.

Available search fields: arid, artist, artistname, creditname, comment, country, date, dur, format, isrc, number,
position, primarytype, qdur, recording, recordingaccent, reid, release, rgid, rid, secondarytype, status, tnum,
tracks, tracksrelease, tag, type, video

musicbrainzngs.search_release_groups(query=’‘, limit=None, offset=None, strict=False,
**fields)

Search for release groups and return a dict with a ‘release-group-list’ key.

Available search fields: arid, artist, artistname, comment, creditname, primarytype, rgid, releasegroup, re-
leasegroupaccent, releases, release, reid, secondarytype, status, tag, type

musicbrainzngs.search_releases(query=’‘, limit=None, offset=None, strict=False, **fields)
Search for recordings and return a dict with a ‘recording-list’ key.

Available search fields: arid, artist, artistname, asin, barcode, creditname, catno, comment, country, creditname,
date, discids, discidsmedium, format, laid, label, lang, mediums, primarytype, quality, reid, release, releaseac-
cent, rgid, script, secondarytype, status, tag, tracks, tracksmedium, type

1.3.4 Browsing

You can browse entitities of a certain type linked to one specific entity. That is you can browse all recordings by an
artist, for example.

1.3. API 9

http://musicbrainz.org/doc/Development/XML Web Service/Version 2/Search

musicbrainzngs Documentation, Release 0.5

These functions can be used to to include more than the maximum of 25 linked entities returned by the functions in
Getting Data. You can set a limit as high as 100. The default is still 25. Similar to the functions in Searching, you have
to specify an offset to see the results you haven’t seen yet.

You have to provide exactly one MusicBrainz ID to these functions.

musicbrainzngs.browse_artists(recording=None, release=None, release_group=None, in-
cludes=[], limit=None, offset=None)

Get all artists linked to a recording, a release or a release group. You need to give one MusicBrainz ID.

Available includes: aliases, tags, user-tags, ratings, user-ratings, area-rels, artist-rels, label-rels, place-rels,
recording-rels, release-rels, release-group-rels, url-rels, work-rels

musicbrainzngs.browse_labels(release=None, includes=[], limit=None, offset=None)
Get all labels linked to a relase. You need to give a MusicBrainz ID.

Available includes: aliases, tags, user-tags, ratings, user-ratings, area-rels, artist-rels, label-rels, place-rels,
recording-rels, release-rels, release-group-rels, url-rels, work-rels

musicbrainzngs.browse_recordings(artist=None, release=None, includes=[], limit=None, off-
set=None)

Get all recordings linked to an artist or a release. You need to give one MusicBrainz ID.

Available includes: artist-credits, isrcs, tags, user-tags, ratings, user-ratings, area-rels, artist-rels, label-rels,
place-rels, recording-rels, release-rels, release-group-rels, url-rels, work-rels

musicbrainzngs.browse_release_groups(artist=None, release=None, release_type=[], in-
cludes=[], limit=None, offset=None)

Get all release groups linked to an artist or a release. You need to give one MusicBrainz ID.

You can filter by musicbrainz.VALID_RELEASE_TYPES.

Available includes: artist-credits, tags, user-tags, ratings, user-ratings, area-rels, artist-rels, label-rels, place-rels,
recording-rels, release-rels, release-group-rels, url-rels, work-rels

musicbrainzngs.browse_releases(artist=None, track_artist=None, label=None, recording=None,
release_group=None, release_status=[], release_type=[], in-
cludes=[], limit=None, offset=None)

Get all releases linked to an artist, a label, a recording or a release group. You need to give one MusicBrainz ID.

You can also browse by track_artist, which gives all releases where some tracks are attributed to that artist, but
not the whole release.

You can filter by musicbrainz.VALID_RELEASE_TYPES or musicbrainz.VALID_RELEASE_STATUSES.

Available includes: artist-credits, labels, recordings, isrcs, release-groups, media, discids, area-rels, artist-rels,
label-rels, place-rels, recording-rels, release-rels, release-group-rels, url-rels, work-rels

musicbrainzngs.browse_urls(resource=None, includes=[], limit=None, offset=None)
Get urls by actual URL string. You need to give a URL string as ‘resource’

Available includes: area-rels, artist-rels, label-rels, place-rels, recording-rels, release-rels, release-group-rels,
url-rels, work-rels

1.3.5 Submitting

These are the only functions that write to the MusicBrainz database. They take one or more dicts with multiple entities
as keys, which take certain values or a list of values.

You have to use auth() before using any of these functions.

musicbrainzngs.submit_barcodes(release_barcode)
Submits a set of {release_id1: barcode, ...}

10 Chapter 1. Contents

musicbrainzngs Documentation, Release 0.5

musicbrainzngs.submit_isrcs(recording_isrcs)
Submit ISRCs. Submits a set of {recording-id1: [isrc1, ...], ...} or {recording_id1: isrc, ...}.

musicbrainzngs.submit_tags(artist_tags={}, recording_tags={})
Submit user tags. Artist or recording parameters are of the form: {entity_id1: [tag1, ...], ...}

musicbrainzngs.submit_ratings(artist_ratings={}, recording_ratings={})
Submit user ratings. Artist or recording parameters are of the form: {entity_id1: rating, ...}

musicbrainzngs.add_releases_to_collection(collection, releases=[])
Add releases to a collection. Collection and releases should be identified by their MBIDs

musicbrainzngs.remove_releases_from_collection(collection, releases=[])
Remove releases from a collection. Collection and releases should be identified by their MBIDs

1.3.6 Exceptions

These are the main exceptions that are raised by functions in musicbrainzngs. You might want to catch some of these
at an appropriate point in your code.

Some of these might have subclasses that are not listed here.

class musicbrainzngs.MusicBrainzError
Base class for all exceptions related to MusicBrainz.

class musicbrainzngs.UsageError
Bases: musicbrainzngs.musicbrainz.MusicBrainzError

Error related to misuse of the module API.

class musicbrainzngs.WebServiceError(message=None, cause=None)
Bases: musicbrainzngs.musicbrainz.MusicBrainzError

Error related to MusicBrainz API requests.

class musicbrainzngs.AuthenticationError(message=None, cause=None)
Bases: musicbrainzngs.musicbrainz.WebServiceError

Received a HTTP 401 response while accessing a protected resource.

class musicbrainzngs.NetworkError(message=None, cause=None)
Bases: musicbrainzngs.musicbrainz.WebServiceError

Problem communicating with the MB server.

class musicbrainzngs.ResponseError(message=None, cause=None)
Bases: musicbrainzngs.musicbrainz.WebServiceError

Bad response sent by the MB server.

1.3.7 Logging

musicbrainzngs logs debug and informational messages using Python’s logging module. All logging is done in the
logger with the name musicbrainzngs.

You can enable this output in your application with:

import logging
logging.basicConfig(level=logging.DEBUG)
optionally restrict musicbrainzngs output to INFO messages
logging.getLogger("musicbrainzngs").setLevel(logging.INFO)

1.3. API 11

http://python.readthedocs.org/en/v2.7.2/library/logging.html#module-logging

musicbrainzngs Documentation, Release 0.5

12 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• search

13

musicbrainzngs Documentation, Release 0.5

14 Chapter 2. Indices and tables

Python Module Index

m
musicbrainzngs, ??

15

